Quote in context:
Suppose you have constructed the best set of features you can, but the classifiers you receive are still not accurate enough. What can you do now? There are two main choices: design a better learning algorithm, or gather more data (more examples, and possibly more raw features, subject to the curse of dimensionality). Machine learning researchers are mainly concerned with the former, but pragmatically the quickest path to success is often to just get more data. As a rule of thumb, a dumb algorithm with lots and lots of data beats a clever one with modest amounts of it. (After all, machine learning is all about letting data do the heavy lifting.)The immediately following paragraph also has some good stuff:
This does bring up another problem, however: scalability. In most of computer science, the two main limited resources are time and memory. In machine learning, there is a third one: training data. Which one is the bottleneck has changed from decade to decade. In the 1980s it tended to be data. Today it is often time. Enormous mountains of data are available, but there is not enough time to process it, so it goes unused. This leads to a paradox: even though in principle more data means that more complex classifiers can be learned, in practice simpler classifiers wind up being used, because complex ones take too long to learn. Part of the answer is to come up with fast ways to learn complex classifiers, and indeed there has been remarkable progress in this direction (for example, Hulten and Domingos).